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Abstract: In this article, a novel bio-nanocomposite sample made of sodium alginate polymer, graphene nano-
sheets and wollastonite powder were produced using freeze-drying technique. The samples were mechanically and
biologically evaluated using tensile strength and biological test. The phase and topological characterization were
conducted by performing X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies. Subsequently,
using Euler-Bernoulli and Timoshenko beam (EBT and TBT) theories, the buckling response of the porous bio-
nanocomposite soft tissue were analyzed with respect to graphene content. In order to solve the governing
equations a sufficient numerical solution is proposed. Elastic modulus and mass density of the porous bio-
nanocomposite are extracted from the experimental tests. The obtained results indicated the sample with 1 wt.%
graphene sheet showed proper mechanical and biological features. Therefore, the sample with 1 wt.% graphene
sheet can be used as potential case for light weight bone substitute applications.
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1. INTRODUCTION

Regarding human body disability of repairing
bone defects, application of artificial bone tissue
has received much attention in recent decades.
New generation of bio-scaffolds are the
appropriate approach for defective bone tissue.
Bone defects are the consequences arising from
trauma, accident, genetic or disease [1].
Recently, several studies have been conducted to
produce novel porous bio-nanocomposite
scaffold materials using various methods for
clinical applications [2-4]. Biomaterials used in
this category of application should be bioactive
and made of synthetic or natural polymers,
ceramics, and metals with sufficient porosity to
ensure blood circulation inside human body
using software and anatomical model [5-10].
Despite bioactivity, such materials have shown
low mechanical properties and weak chemical
stability —beside problematic reaction in
biological environment. Sufficient techniques
have been presented to improve biomaterial
mechanical characteristics such as compressive
strength, fracture toughness, porosity and tensile
strength [11-16]. Ceramic materials including
hydroxyapatite =~ (HA), biphasic  calcium
phosphate (CaP), bio-glasses (BG), and -
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tricalcium  phosphate (BTCP) are being
employed in bone tissue engineering
applications [17-25]. Moreover, calcium silicates
(CNS), as a class of glass silicate, are one the bio-
active-ceramic that has been utilized for
orthopedic applications for decades [26-27]. The
CS bioceramics are also used as coating cover
for improving bioactivity of the porous scaffold
implants [27]. Another fascinating property of
CS is the ability to bond with natural bone inside
the body, and the combination of CS with
Magnesium (Mg) [28], Zinc (Zn), Strontium (Sr)
[29] results in ameliorate molecular bonding
properties for bone tissue approaches [30]. The
CS bioceramic perform better mechanical
behavior in comparison to other CaP bio-
ceramics [31]. However, due to the required
porosity and proper porous microarchitecture,
the scaffold discloses unsuitable mechanical
stiffness required for body weight and applied
forces. Xu et al. [32] conducted in vivo bone-
generative resorption and evaluate the capacity
of porous bioactive PB-calcium silicate (B-CS)
ceramics in a rabbit calvarial defect model. The
B-CS ceramic was implanted in rabbit calvarial
defect for 4, 8, and 16 weeks. Lin et al. [33]
scrutinized the osteoporotic defect bone
generation improvements by utilizing porous Sr-
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substituted calcium ceramic scaffolds. Improving
the mechanical characteristic of CS has been a
controversial topic since the first usage of this
material in biomedical application. Several
strategies are proposed for improving its
mechanical performance including
reinforcement like graphene sheet (GS),
magnetite nanoparticles (MNPs) or carbon
nanotubes (CNTs). Mehrali et al. [34]
synthesized a calcium silicate-reduced graphene
oxide for hard tissue applications with enhanced
mechanical properties using graphene reinforced
CS. GS and CS both indicated proper
biocompatibility features for bone
microstructures like scaffolds and porous
network. Shao et al. [35] developed a high
strength Mg-doping wollastonite based scaffold
by 3D printing technology having pore size and
the heating procedure to strengthen the scaffold
microstructure. Several polymers have been used
for such purpose including chitosan, alginate,
sodium alginate, gelatin application in
pharmacokinetics [36-42, 53]. Xiong et al. [43]
proposed a novel hybrid sodium alginate-based
nanocomposite reinforce via graphene oxide and
hydroxyapatite produced by freeze-drying
method to mimic required mechanical and
biological properties range. Another application
of hybrid tissue is water treatment, for instance,
Karkeh-abadi et al. [44] developed efficient
adsorbents to remove radioactive pollutants from
medical and industrial wastewater by
functionalized CNT in sodium alginate-based
nanocomposite. Lonita et al. [45] presented a
novel study on the sodium alginate graphene
oxide nanocomposite films with enhanced
mechanical and thermal properties showing high
interfacial adhesion between graphene and
alginate matrix due to its hydrogen boding
remarkably altered the mechanical properties
and thermal stability of the bio-nanocomposite
films. Scaffold fabrication techniques including
solvent casting [46], particulate-leaching [47],
gas foaming [48], phase separation [49], freeze-
drying [50-51], and 3D printing [52-53] are
being used widely for biomedical usage.
However, among these techniques, freeze-drying
is one of the important, low cost, easily
accessible and developed methods since it has
the ability to control the porosity by the rate of
freezing. Khorsand et al. [53] developed TiO,
based scaffold doped in chitosan/HA utilizing

freeze  drying technique  with  various
hydroxyapatite ratios. The application bio-
nanocomposites are extended in term of other
fields studies including dental application [54-
58]. In previous study, Foroutan et al. [59]
concentrated on manufacturing polymer-based
scaffold with wollastonite-graphene
reinforcement. The mechanical and biological
characterizations of prepared scaffold are
studied. Moreover, the optimization is applied to
the study for clear announcement of the
optimum sample. Saber-Samandari et al. [60]
prepared polyacrylamide-based nanocomposite
scaffold incorporating nanohydroxyapatite by
freeze drying method. To evaluate the
mechanical behavior of the prepared bio-
nanocomposite, the Timoshenko and Euler-
Bernoulli beam theories are applied in different
studies to investigate the buckling and bending
behavior of beams. Sahmani et al. [61]
investigated the nonlinear bending and
instability of bredigite bioceramic incorporating
magnetic nanoparticle. Foroutan et al. [62]
proposed the buckling behavior analysis of
current carrying nanowires regarding the
magnetic field (MF) effects incorporating
surface and nonlocal effects. Results revealed the
MF increases the buckling load while nonlocal
parameter reduces the buckling load. The
mechanical and  biological feature of
biomaterials domain has been investigated with
various techniques such as wet chemistry and
mechanical activation methods. Several works
have been conducted on drug loading and effect
of nanoparticles on the composite. Molecular
dynamic (MD) evaluation also can predict the
mechanical properties of macron and micron
scale [63-77]. Various numerical investigation
has been performed on the composite to discover
the influence of interphase of composite
mathematically [68-74]. In the current paper, the
sodium alginate biopolymer is composed with
wollastonite ceramic to prepare proper bone
substitution  for  orthopedic  approaches.
Moreover, GS is added in various content levels
to the bio-nanocomposite. Mechanical and
biological characterizations of the prepared bio-
nanocomposite are surveyed. In order to
investigate the mechanical behavior of the
composed bio-nanocomposite, the Timoshenko
and Euler-Bernoulli Beam theories (TBT) and
(EBT) are used based upon the extracted elastic
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modulus and mass density of the porous bio-
nanocomposite from experimental examination
to develop the classical beam responses.

2. EXPERIMENTAL PROCEDURES

2.1. Raw Materials

In the current study, the graphene nanosheet was
used to enhance the new generation of calcium
silicate (CS) scaffold. Sodium alginate (SA) as a
natural polymer (Mw=216.12 g/mol, 98% purity,
size <100 nm Merck company, Germany) were
purchased. The wollastonite nanopowder was
fabricated using high-energy ball milling
(HEBM) and graphene sheet (GS) nanoplatelets
(US Research Nanomaterials, Inc, +99.5%, 2.18
nm with 32 layers) are utilized.

2.2. Wollastonite Preparation

First, the preparation of wollastonite (WS)
made of CaCO; and SiO, mixing by magnetic
stirrer with 400 rpm and 25 °C dissolving in
Acetic acid and water solution. Then the
obtained gel is kept for 3 days in 70 °C.
Furthermore, the temperature was increased to
150 °C for 24 h to dry the gel [59]. Dried gel is
milled and filtered to reach particle size of 10-
50 um. Finally, two heating operation is applied
on the particle in 700 °C and 1000 °C for 3 h to
create the WS ceramic powder.

2.3. Nanocomposite Preparation

After the WS was prepared, manufacturing
process of scaffold composites was performed.
Briefly, 7.5 gr of sodium alginate powder was
synthesized with 100 mL distilled water and 1
vol% acetic acid stirring for 3h and 1200 rpm
with 50 °C. After that, 1.8 gr of WS powder were
mixed with for various content of graphene (0, 1,
2, and 3 wt% GS) based on constant WS powder.
In order to combine the prepared SA biopolymer
and synthesized GS-WS powders the digital
ultrasonic device is employed [59].

2.4. Scaffold Preparation

Then, the four porous bio-nanocomposite
scaffolds were placed into freezer at -70 °C for
24 h. The frozen porous scaffold was set into the
freeze-drier device for another 24 h at -45 °C
with 0.01 bar to drain all the available waters to
improvise required porosity (DORSA-TECH
Company, Tehran, Iran) [59]. Porous scaffold
removed from the freeze-drier machine after 48
h and placed in the incubator. Therewith, the

mechanical and biological tests are performed on
the four porous bio-nanocomposites.

2.5. Characterization

2.5.1. Porosity Measurement

To evaluate the porosity of the bio-
nanocomposite, the Archimedes and Image-J
techniques were used. To this end, a graded
cylindrical container with a fixed stilled water
volume (V) is utilized [59]. Then, the prepared
bio-nanocomposite was place into the water so
that the water penetrates all the available
porosity in the matter (V,). Afterward, the
composite was pulled out of the container and
the volume of water was measured (V;). The
formula for the porosity percentage is written as
equation 1:

Porosity (%) = (Vi- V3)/ (V- V3)X 100 (1)

2.5.2. Tensile Strength Evaluation

The mechanical properties of the nanostructure
including tensile strength and elastic modulus
are investigated by the tensile strength device
(SANTAM-STMS50) by applying load of 0.5
mm/min [59]. The porous samples are cut into
pieces with 9 mm diameter and 20 mm length
corresponding to the fixed materials (WS-SA)
and various content of GS powder. Obtained data
are used to plot the stress-strain graph. The
graph slop and the maximum value of stress are
the elastic modulus and tensile strength,
respectively.

2.6. Biological Evaluation

The Simulated Body Fluid (SBF) was utilized in
order to evaluate the pH behavior of bio-
nanocomposite. The ionic concentration of SBF is
very similar to human blood plasma; therefore, it
is used to evaluate the bio-nanocomposite pH
behavior. To this end, the samples are drowned in
SBF for 1, 3, 7, 14, 21 and 28-day’s periods. The
pH value is determined using a digital pH meter
device at Amirkabir University Technology.

2.7. Microstructural and Phase
Characterization

The morphology and structural properties of Na-
alginate-WS-Graphene  Sheet porous  bio-
nanocomposite  scaffold are characterized
through scanning electron microscopy (SEM) at
Amirkabir University of technology (SERON
Technology-AIS2100, South Korea, Display
Magnitude 15 to 30000, Resolution 5/3 nm). The
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device voltage and electricity current were 40
KV and 30 mA, respectively. Moreover, phase
composition of Na-alginate-WS-GS scaffold is
investigated utilizing X-ray diffraction (XRD)

(INEL-EQUNIX 3000, French). Figure 1
displays the manufacturing process of fabricated
scaffold bio-nanocomposite and required
analysis of the structural characteristics.
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Fig. 1. Schematic of fabrication procedure of porous bio-nanocomposite made of Na-alginate-WS-reinforced
with graphene oxide using freeze drying technique.
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2.8. Analysis of Porous Scaffold Based on
EBT and TBT Theories

In this section, the buckling behavior of bio-
nanocomposite is investigated using TBT and
EBT. Governing equations are derived based on
both Euler-Bernoulli (EBT) and Timoshenko
Beam Theories (TBT). Clamp-clamp (C-C)
boundary conditions are imposed to simulate the
bone replacement in the human body.
Afterwards, the governing equations are solved
using Generalized Differential Quadrature
Method (GDQM) [12, 62 and 64]. According to
the Hamilton’s principle the buckling
equilibrium equations is written as:

dU-0W=0

Where 86U and 6W are virtual strain energy and
virtual work done by external applied forces,
respectively. Regarding the EBT and TBT
theories, displacement fields are expressed as:

dv:l(x) dw(x) (x)}, @)

u(x,z)=u(x)-z

+P(z )[
v(x,z) =0,
w(x,z)w(X),

Where u, w, and ¢ are axial displacements,
transverse displacements, and angle rotation of
cross section about y-axis, respectively. P(z) for
both EBT and TBT is defined as:

P(2)=0 EBT
P(z)=z TBT 3)

Based on defined displacement field, the strain

components can be express as:
2

€xx :d_u_Pd(P_( _P)d

dx dx

4)

In order to derive the classical governing
equations based on Hamilton’s principle, the
stress resultants are defined as:

YR jxx{lP(Z P)}dA,Q = 5 P 4a,6)

Where o, and oy, denote stress tensor
components. Finally, the generalized governing
equations (GGE) are derived according
Hamilton’s principle as follow:

8u:d—N+f=O, (6)
dx
2
o O A0 dfdw)
dx? dx dx dx
8(p:d—M—Q=O
dx

Where 6¢ is merely expressed in TBT.
Moreover, q and f are the transverse and
distributed axial loads, respectively. For EBT
and TBT the derived equations based on Eq. 5
are written as:

- 2
Sw EI(Cl1 Nmi—vzv=0, EBT (7)
X X
d2
611 EAdX—ZZO, (8)
2 2 2
sw:GA| LW 4| N SV o 1By
dx? dx? dx

2
8(p:—EId i GA(dW j:o,
dx? dx

Where G is the shear modulus of elasticity that
can be derived from G=E/(2(1+v)), v is the
Poisson’s ratio which can be derived from rule of
mixture (ROM) as [65]:

V=V Vs ¥ VsaVsa + Va6 Vars

Where V., Vsa, and Vg, are the volume fraction
WS, SA, and GS, respectively. Moreover vys,
Vsa, and vg, are the Poisson’s ratios for WS, SA
and GS, respectively. For acquiring more general
responses the following dimensionless groups
are utilized:

* X * w N L2
X =—,W =— =o,p=—01 EBT
L L ¢ =0p EI
I G N
, —,y=—= TBT 9
A TET T EA ©)
2.8.1. Generalized Differential Quadrature
Method (GDOM)

In order to solve the derived equation a
numerical method is used. This method is known
as Generalized Differential Quadrature Method
(GDQM) [59-64] which is famous for its simple
and low-cost calculations. Applying the
boundary conditions is an outstanding point of
this method since the boundary conditions can
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be imposed simultaneously with the calculations.
There are no restrictions on the number of mesh
points applied for approximation in this method.
Moreover, the weighted coefficients are derived
by simple recurrence relation rather than a set of
algebraic equations. These two advantages make
GDQM a superior method in comparison to
other DGM approaches [12, 62, 64, 65]. The
partial derivations of function f with respect to
spatial variables at the point x; are expressed as:

d"f
dx"

=SN ~m
_ijlcij f(x)), (10)

where ijn) and N are weighted coefficients

matrix and the number of mesh points,
respectively. Moreover, f can be replaced by u,
w, and ¢. For the first derivation, weighted
coefficient matrix is written as:

N N

H(Xi—xk) H(Xi X, ) 1#]
Ci(jl) _ JkSike . K=Lk#j (11
Z . S (=]
k=1,k#i (x; —xy)

Where i, j are natural numbers. The weighted
coefficient for higher-order derivation is
expressed as:

N
@ _ ()
Cj; _Zkzlcikckj
3 _ NN ~@n0
Cij _Ekzlcik ij

-3 ey (12)

Another important factor in the accuracy and the
convergence of the solution is the distribution
pattern of the mesh points. Here, the Chebyshev-
Gauss-Lobatto (CGL) distribution pattern is
expressed as:

X; =l{1—cos{(i_l)n}} =1,2,3,...,N
2 (N-1

For improving the accuracy of the responses in
implementation of GDQ method, the number of
mesh points for a converged response are shown
in Fig. 2.

2.8.2. Applying the Boundary Conditions

The corrected collocation method [65] is applied
to enforce the boundary conditions. For clamp-
clamp boundary condition the following

boundary conditions are imposed in the
governing equations:

w(0)=w(1)=0
w'(0)=w'(1)=0
w(0)=w(1)=0
u(0)=u(1)=0

¢(0)=(1)=0

Solving the equations based on GDQM and the
essential boundary condition requires the
application of eigenvalue theorem. After
implementation of the eigenvalue theorem, the
minimum dimensionless critical buckling load is
obtained, then by utilizing the related
dimensionless term the value of critical buckling
load is acquired. The constant geometrical and
mechanical values used in this research are
assumed as:

L=15mm, D=1.5mm, vy,=0.3, vga=0.5,v5=0.3

0.5

=

=~

<
T

Critical buckling load (N)
=
=

=

o

5
T

03 1 | | |
5 6 7 8 9 10 1

Number of mesh points
Fig. 2. The critical buckling load in terms of number
of mesh point

3. RESULTS AND DISCUSSION

In this section, the obtained results from the
biological and mechanical tests are discussed
and evaluated thoroughly. Moreover, XRD,
SEM, and numerical analysis are debated
regarding the obtained results. By the means of
such tests and analysis the bio-nanocomposite
behavior and bio-compatibility are examined,
and the 1 wt% GS is selected as the most
sufficient one.

3.1. Mechanical Tests
Fig. 3 depicts the stress-strain graph for four

ey o
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levels of graphene weight percent. Extracted
from the given graph, the elastic modulus is
derived. As it is obvious from Fig. 3, increasing
the GS weight percent from 0 wt% to 2 wt%
would increase the material stiffness. It is
absorbing that the GS percentage would decrease
the material stiffness for the third level of
graphene sheet (GS=3 wt%). This is probably
happened due to the mixing features of the
materials and agglomeration. Extracted data
were obtained from previous work [59] to
discover the elastic modulus of 0 to 3 wt% GS
added to the sodium alginate-wollastonite.

3.2. pH Observation

In this section the pH behavior of prepared
porous bony bio-nanocomposite is discussed.
Fig. 4. represents the pH ranges for the basic
(without GS) and optimum samples, and this pH
rages can influence the rate of degradation.
Since, WS is ceramic composed of silicate, it can
affect the trend of pH changes and dominate the
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trend. Therefore, the basic sample can indicate
the trend of pH changes for other various levels
of GS powder. It means if the pH basic sample
increases the other samples also follows the
same trend. However, the GS can also influence
the pH ranges. As it is shown in Fig. 4, the WS
for pure sample increase the pH value, however;
the graphene nanosheet is change reversely.

3.3. XRD Analysis

In this section, the XRD data are analyzed and
discussed. Fig. 5 described the XRD reveals that
produced bio-nanocomposite are containing GS
since the XRD for the pure Gr pick on 26.5° 26
are repeated for the bio-nanocomposite with 2
and 3 wt% GS. It is also discovered that the
picks on approximate 30° are the one showed for
the highest pick of WS on almost the same
degree. The reasons of such small shifts on the
degrees of highest peaks are inferred from the
composite structure.
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Fig. 3. Stain-stress graph for four levels of Graphene (i.e.; GS= 0-3 wt%)
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Fig. 4. The pH values in terms of number of days for basic and optimum composites
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Fig. 5. XRD pattern of prepared scaffold using freeze drying technique containing various amount of GS

3.4. SEM Analysis

The SEM images is a way to see the composite
structure including porosity, material, and samples
layout. Fig. 6 shows the SEM images of four levels
of GS weight percent. Fig. 6(a) shows when GS is
not added to the bio-nanocomposite, the bonds
between SA and WS are attended to be weak and
string like. The WS nanoparticles are clustered and
cause to create bio-nanocomposite with low
porosity. Moreover, Fig. 6(b) shows the sample with
1 wt% GS chemical bonds between GS and WS are
presented, thus the porosity size decrease to the
rages of 150-200 um. Fig. 6(c) displayed that when
the GS weight percent increases, the agglomeration
happens, and the GS agglomeration bond to the WS
nanoparticles. This phenomenon decreases the
porosity, but not happening all over the sample. Fig.
6(d) shows the porosities are shaped wall-like, and
the connections between WS and GS homogenously
distributed all over the sample.

3.5. TBT and EBT Results

In this section, the buckling behavior of bio-
nanocomposite beam restricted by clamp-clamp
(C-C) boundary condition is discussed, and the
obtained results are shown. Fig. 7 introduced the
critical buckling load in terms of diameter and
length are depicted for four levels of GS based on
EBT. As it is previously shown, increasing the
diameter incorporate escalations in the values of
critical buckling load [12, 59, 62]. In contrast, the
length of nanocomposite beam plays a
contrariwise role which indicates reduction of
critical buckling load as the length grow. Figure 8
plotted the critical buckling load as a function of
diameter and length for various levels of GS. Fig.
7 and Fig. 8 displays the same results for length
and diameter of bio-nanocomposite. Moreover,
increasing the weight percentage of GS in the
nanocomposite decreases the material stiffness and
diminishes the critical buckling load [66 - 68].
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Besides, a comparison of EBT and TBT value in
the Figures discloses that the critical buckling load
is lower in TBT because of considering more
degrees of freedom. After evaluation of TBT and
EBT, one can conclude that prepared scaffold
compared to the other works have proper

properties to load any drug and consider various
nanoparticles in the sodium alginate and

wollastonite matrix. Also, application of molecular
dynamic (MD) can help the researchers to predict
the mechanical properties of macron and micron
scale without experimental testing [63-78].

Amirkabir University  as2300c _SEI WD = 12.8 20.0 kV X 250

AlS2300C_SEI WD =13.3 20.0 kV X 59 _1mm

Fig. 6. SEM images of porous sample containing (a) 0 wt%, (b) 1 wt%, (c) 2 wt%, (d) 3 wt% of GS in the
sodium alginate-wollastonite matrix fabricated using freeze drying technique
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Fig. 7. Variation of critical buckling load in term of nanocomposite (a) diameter, and (b) length for four levels of
Graphene based on EBT and clamp-clamp (C-C) boundary condition.
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Fig. 8. Variation of critical buckling load in term of nanocomposite (a) diameter, and (b) length for four levels of
Graphene based on TBT and clamp-clamp (C-C) boundary condition.

4. CONCLUSION

Elastic modulus and mass density of the bio-
nanocomposite are extracted from the
experimental tests. The obtained results
indicated that the sample with 1 wt. % graphene
nanosheet has shown proper mechanical and
biological features. Therefore, the sample with
1 wt.% graphene can be used as potential case
for light weight bone substitute applications. In
this section, the obtained results from the
biological and mechanical tests are discussed
and evaluated thoroughly. Moreover, XRD,
SEM, and numerical analysis are debated
regarding the gained images and facts. Using
such tests and analysis the bio-nanocomposite
behavior and bio-compatibility were examined,
and the 1 wt.% graphene nanosheet sample is
selected as the most sufficient one. There are no
restrictions on the number of mesh points
applied for approximation in this method.
Moreover, the weighted coefficients are derived
by simple recurrence relation rather than a set
of algebraic equations. These two advantages
make GDQM a superior method in comparison
to other DGM approaches. The synthesized
calcium silicate-reduced graphene oxide for
hard tissue applications with enhanced
mechanical  properties  using  graphene
nanosheet reinforced CS was successfully
achieved.
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