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Abstract: The effect of different Nd and PT compositions on the electrical and ferroelectric properties of
(1-y)Bi1xNdxFeOs,PbTiOs solid solutions, where x= 0.05, 0.10, 0.15, 0.20 and y= 0.1, 0.2, 0.3, and 0.4, was investigated
to optimise material performance. Nd doping enhances the frequency-dependent dielectric properties of produced solid
solutions. However, an anomaly in the dielectric loss tangent, which is consistent with the Debye relaxation process, is
observed for compositions with x< 0.10 and y >0.2 values in the frequency range of 1 KHz to 1 MHz. Dielectric anomalies
were more noticeable around the transition temperature in temperature-dependent dielectric characteristics plots,
suggesting stronger magnetoelectric interactions. The decrease in the dielectric constant for solid solution compositions
with y >0.3 indicates the presence of MPB with BFO due to an increase in the tetragonal phase of the PbTiO3 compound.
As Nd content increases, temperature-dependent dielectric permittivity predicts relaxor-type ferroelectric performance
for y= 0.4 composition of solid solutions. A ferroelectric investigation showed that saturation polarisation, remnant
polarisation, and coercive field of all prepared solid solutions decrease with increased Nd doping. However, for y >0.3
composition, a substantial rise in these parameters was observed, which is a result of electric order dominating over
magnetic order in solid solutions. The study reveals that Nd doping reduces leakage current, making it a promising

contender for future applications.
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1. INTRODUCTION

Relaxor ferroelectrics with low remnant
polarisation (P;) and moderately high saturated
polarisation (Pmax) have garnered significant
interest in energy storage applications [1]. The
substitution of ions or the creation of solid
solutions with alternative materials can produce
the relaxor ferroelectric phase. Due to excellent
saturation polarisation, studies of the BiFeOs-
BaTiO; (BF-BT) solid solution demonstrate that
including relaxor dielectric components can
successfully modify the energy storage outcomes.
However, high P, values limit pure BFO-BT's
energy storage values [2]. Due to remarkable
maximum polarisation (Pmax >100 uC/cm?),
BiFeOs; (BFO) was found to be a promising lead-
free energy storage material with the potential for
excellent energy storage performance [3]. With a
deformed rhombohedral perovskite structure and
R3c space group symmetry, BFO possesses both
G-type anti-ferromagnetism and ferroelectricity,
with matching Curie temperatures of 1103K and

Neel temperatures of 643 K [4]. The ferroelectricity
results from the movement of Bi** ions
from centrally symmetric locations about the
surrounding oxygen ions. BFO has many
fascinating features but disadvantages, such
as weak magnetisation, high leakage current,
high dielectric loss, low ferroelectric reliability,
secondary phase production, and weak
magnetoelectric coupling. Perovskite-type
composites, like PbTiO; or BaTiO;, enhance
BFO's multiferroics properties and energy storage
capabilities. Because of its high polarisation and
dielectric constant, ferroelectric material PbTiO;
(PT) is used in this work. It settles the composite's
perovskite phase and, because of the differences
in crystal symmetry between PT and BFO, also
generates a morphotropic phase boundary (MPB)
with BFO. To lower leakage current and enhance
the functional characteristics of BFO, we created
a BFO-PT solid solution. Additionally, doping
it with rare earth elements improved BFO's
multiferroics and dielectric characteristics. In
the present research, we explore solid solutions'
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dielectric and ferroelectric features and study
their electrical and ferroelectric properties with
varying Nd and PT compositions. In addition, we
examine the relaxor behaviour of solid solution
for an appropriate Nd and PT composition, which
reveals the effectiveness of the energy storage
system.

2. EXPERIMENTAL PROCEDURES

Solid solutions of (1—y)Bi;-xNdxFeOs—yPbTiO3
with x varying from 0.05 to 0.20 in increments
of 0.05 and y ranging from 0.1 to 0.4, were
synthesised using the solid-state reaction
technique. Analytical-grade reagent powders
(Bi203, Fe 03, PbO, Nd,0s, and TiO,) were
accurately weighed and thoroughly mixed in
acetone for four hours using an agate mortar.
There were no deviations in the proportions taken.
The following equation represents the reaction.

42009 i, 05 + X2 Nd, 0, + Y Fe, 0, +
yPbO + yTiO, = (1 — y)Bi,_;Nd FeO; — yPbTiO,
(1
We calcined the finely ground powders in a
furnace for two hours at 800, 810, 830, and 840
degrees Celsius for different PbTiO3; composition
compositions. A 5% excess of Bi,O3 was added to
the starting reactants during the synthesis process
to prevent the formation of secondary phases
of Bi2Fe409. After adding several drops of
a concentrated fluid polyvinyl alcohol (PVA)
binder (5%), we processed each powder
composition for an additional two hours in the
agate mortar. Pellet specimens, with a diameter of
6 mm and a thickness of 1 mm, were created
by compressing mixed powders of different
compositions into circular discs while imposing
pressure of 1.5 x 10° Pascal's and then heated
the discs to 820, 830, 850, and 860 degrees
Celsius for two hours. Using an X-ray diffraction
technique at room temperature on a Bruker
D8 Advance X-ray diffractometer with CuK
radiation at a wavelength of 1.5406 A, the
samples' crystal structure and phase evolution
were investigated [5]. The surface morphology of
artificial samples was analysed using Carl Zeiss
EVOI18 scanning electron microscopes with an
electron beam intensity of 20 Kev. We used an
argon laser with a wavelength of 514.5 nm as the
stimulation source for the Renishaw micro Raman
microscope to conduct the Raman spectroscopy
investigations. Sharma et al. 2024 provide

comprehensive information on solid solutions'
structural and average crystalline size determination
[6]. We performed dielectric measurements in the
temperature range of 35°C to 400°C, with 5°C
phase increments, using a computer-controlled
Alpha-A High Impedance Analyzer (Novo
Control) within a frequency bandwidth of 10> Hz
to 10° Hz. and also investigated the solid
solutions' P-E loops and leakage current versus
voltage characteristics using a Radiant Precision
Multiferroic Tester operating at 10 Hz.

3. RESULTS AND DISCUSSION

3.1. Dielectric Analysis of Nd-doped BiFeOs-
PbTiOs Solid Solution with Frequency at
Ambient Temperature

Figure 1 to 4 illustrates the variability of the
dielectric constant and dielectric loss tangent
(tand) of (1-y)1-xNdFeOs-yPbTiOssolid solutions
in the frequency range of 100 Hz to 1 MHz
for various x and y compositions at ambient
temperature. We discovered that the dielectric
constant is noticeably large at low frequencies and
progressively drops as the applied alternating
field frequency rises for all prepared solid
solutions with varying x and y compositions.
We used the interfacial space charge relaxation
process to explain the variation in the dielectric
constant [7, 8]. Bismuth (Bi**) and oxygen (O?)
vacancies on the composition's A-site produce
space charges at low frequencies. Applied electric
field, and these space charges are in phase,
which aids in preserving the dielectric constant.
Additionally, the production of O -vacancies
brought on by the vaporescent nature of the
Bi** and the transformation from Fe™ to Fe*?
causes the dielectric constant to increase with an
increase in Nd doping of all solid solutions with
varied y compositions [9]. The dielectric constant
value decreases in solid solutions for y>0.3
compositions, or the amount of PbTiO; increases,
which is mainly due to PbTiOs's dominance
of tetragonality, which settles the composite's
perovskite phase and creates an MPB with BFO
due to the crystal symmetry differences between
PT and BFO [10, 11, 12].

The dielectric losses, determined by the energy
lost by the device, are further amplified by space
charge polarisation and domain wall resonance.
For all of the created solid solutions with different
x and y components, we found that the dielectric
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loss tangent decreases with increasing frequency
and dielectric loss is high near the grain boundary
at low frequencies due to energy dissipation
caused by amalgamated space charge polarisation
and low at high frequencies due to domain wall
motion suppression.
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Fig. 1. Frequency dependence of € and tand for
(1-y)Bi1xNdxFeO;-yPbTiOs3 solid solutions with
y=0.1 and different x compositions
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Fig. 3. Frequency dependence of € and tand for
(1-y)Bi;xNdxFeOs-yPbTiOssolid solutions with
y= 0.3 and different x compositions
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Fig. 4. Frequency dependence of € and tand for
(1-y)Bi1xNdxFeO;-yPbTiOs3 solid solutions with
y= 0.4 and different x compositions

Additionally, as the frequency of the applied
electric field increases, the redirection of the
space charge slows down and eventually stops.
For compositions with x< 0.10 and y >0.2, in
the 1 KHz—1 MHz frequency range, the dielectric
loss tangent exhibits anomaly; this is compatible
with the Debye relaxation process [13]. Similar
outcomes have been observed with rare earth-
doped multiferroic composites [14]. The samples
are helpful for capacitor, transducer, and microwave
applications due to their high dielectric constant
and low loss.

3.2. Dielectric Analysis of Nd Doped BiFeOs-
PbTiO; Solid Solution with Temperature

Figure 5 to 8 illustrates the variability of the
dielectric constant and dielectric loss tangent
(tand) of (1-y)BiixNdxFeOs-yPbTiO; solid
solutions with temperature in the frequency
range of 1 kHz to 1 MHz for various x and
y compositions. As the temperature rises, the
relative dielectric constant steadily rises, mildly
extending into the region of high temperature,
which is a characteristic feature of ferroelectric
materials. Dielectric anomalies, however, are
seen at all frequencies as the x and y content
rises. The coexistence of two structure phases
distinguishes all solid solutions for y >0.2
compositions. According to earlier reports [15,
16], rare-earth substitution lowers the Curie
Temperature Tc in the BFO perovskite solid
solutions. The diminished repulsive impact
of short-range against ferroelectric ordering
reduces the transition temperature by adding Nd
content. Furthermore, the powerful interaction
among the Bi"*/Pb*? (A site) and Ti™/Fe*3 (B-site)
cations is responsible for the high transition
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temperature and high tetragonal strain in solid

solutions with y >0.2 compositions.
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The Nd* substitution decreases the coupling
between the cations and reduces the tetragonal
strain in solid solutions. Further, we observed that
dielectric arrangement improves as the Nd level
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increases.

The charge carriers generated by defects and
thermal action cause the dielectric loss tangent to
be high at higher temperatures and low at lower
ones. The reason is that as the temperature rises,
charge carriers gain energy and dielectric loss
increases. The detected anomalies at transition
temperature in the dielectric loss for all solid
solutions with various x and y components are
due to the diminishing magnetic order on electric
order in a magneto-electrically structured system
(Landau-Devonshire phase transition theory). For
all prepared samples, we found that the dielectric
loss tangent reduces with increasing Nd** ions
doping, indicating enhanced stability, sample
resistivity and charge carrier movement. The
increase in tand value in high-temperature regions
indicates that sample conductivity increases.
Furthermore, the motility of charge carriers
increases with temperature, which improves
polarisation, resulting in high dielectric losses and
accumulation of charges at grain boundaries [17].
The effectiveness of oxygen vacancies and
polarisation at high temperatures also explain
the rise in tand. The calcination and sintering
processes generate electrons and oxygen
vacancies. The increase in ionic conductivity at
higher temperatures results from these oxygen
vacancies, which are not restricted to the unit cell
but can affect the entire system [ 18], which could
most likely cause unusual saturation at high
temperatures. Auromun et al. [19] also obtained
this kind of result. Furthermore, for all produced
samples, dielectric loss decreases as doping
increases. Also, the peak widens, intensifies, and
shifts to the higher temperature region with an
increase in frequency, suggesting the presence of
a phase transition of diffuse type. Consequently,
the temperature-dependent feature of dielectric
permittivity reveals the usual attribute of relaxor
ferroelectrics, which may be due to the
simultaneous substitution of Nd** and Pb*'ions
for the Bi*'site cation and Ti*" ion for the Fe**
site cation having different Pauling's electro-
negativities and ionic radii. [20]. As a result,
these parameters promote ferroelectric relaxor
behaviour as these prohibit the long-range
structuring of the lattice.

3.3. Ferroelectric Properties

The current study determines solid solutions'
P-E loops and leakage current vs voltage

characteristics using a Radiant precision
multiferroics tester at 10 Hz frequency. Figures 9
to 12 depict the ferroelectric hysteresis loops
of (1-y)Bii.NdFeOs-yPbTiOs solid solutions
with different x and y compositions at room
temperature. The conductive performance of
BiFeOs limits its ferroelectric behaviour, which is
caused mainly by a larger leakage current. Due to
rare earth ions, the rare-carth-doped BiFeOs-
PbTiOs systems exhibit less conductivity than
binary BiFeO;-PbTiO; systems [21]. In the
prepared samples, ferroelectricity arises from the
hybridisation between the O(2p) orbital of the
BiFeOs crystal and the Bi (6s?) lone pair, as well
as between the Ti(3d) orbital and the O(2p) orbital
associated with the ferroelectric distortion in
PbTiO:s.
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Furthermore, for y >0.2 compositions of solid
solutions, the simultaneous occurrence of the
rhombohedral phase of BFO and the tetragonal
phase of PT also contributes to ferroelectricity. It
is observed that the saturation polarisation and
remnant polarisation of solid solutions are higher
for x=0.05 Nd composition and a chosen value of
y composition and then decrease with increasing

Nd concentration. The structural distortions
and differences in Nd™ and Fe* ionic radii may
cause a diminution in remnant polarisation. Sahu
et al. published a comparable decrease in remnant
polarisation in compounds of BiFeOs3-PbTiOs
doped with Sm [22].

Furthermore, theoretical and empirical
investigations have shown that the remnant
polarisation in materials is affected by oxygen
vacancies [23, 24]. The high-temperature sintering
process produces lead and oxygen vacancies
primarily due to PbO evaporation. These
vacancies produce defect dipoles with Pb ions.
These dipoles produce a polarisation vector,
which tends to cause the dipoles to become
disoriented [25]. The induced polarisation vector
produced by these dipoles needs some additional
energy to align in the direction of the field, and
the restoring force established as a result of
the continuous polarisation helps the domains
regain the original state, resulting in a drop in
remnant polarisation. In Sr-modified BiFeO:s-
PbTiO; ceramics, Kumar N et al. have observed
similar correlations between remnant polarisation
and oxygen vacancies [26].

The nature of P-E hysteresis loops in BiFeOs-
PbTiOs solid solutions strongly depends on the
delicate balance of Nd and PbTiO3; compositions.
Achieving optimal doping reduces leakage
currents and enhances ferroelectric properties,
while excessive doping introduces defects
and disrupts ferroelectric behaviour. In the
present study, all the hysteresis loops in
(1-y)Bi1xNdxFeOs3-yPbTiOs solid solutions with
varied y compositions become saturated with
increasing x composition or Nd doping. As a
result, the P-E loops exhibit a pinning effect.
According to the defect symmetry principle, oxygen
vacancy significantly contributes to the pinning
effect in ferroelectrics [27, 28]. The values of
remnant polarisation and coercive field are reduced
in all the samples under investigation with the
increase in Nd doping, as indicated in Table 1- 3.

Table 1. Variation in Saturation polarisation (Ps) of (1-y)BiixNdxFeO3.,PbTiOs solid solutions with the
varying x and y compositions

Compositions Saturation Polarisation (Ps) pc/cm?
X y=0.1 y=0.2 | y=0.3 y=0.4

0.05 2.1346 | 1.9132 | 0.8296 | 2.6042

0.10 1.1159 | 0.9993 | 0.3161 | 0.6488

0.15 0.8054 | 0.4624 | 0.1708 | 0.5449

0.20 0.4351 | 0.3178 | 0.1111 | 0.3923
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Table 2. Variation in Remnant polarisation (Pr) of (1-y)Bii«NdxFeO;.,PbTiOs3 solid solutions with the variation
in X and y compositions

Compositions Remnant Polarisation (Pr) pc/cm?
X y=0.1 | y=02 | y=03 | y=04
0.05 1.0553 | 0.7735 | 0.5488 | 7.9046
0.10 0.4792 | 0.3123 | 0.0993 | 0.1909
0.15 0.2901 | 0.0950 | 0.0787 | 0.1389
0.20 0.0314 | 0.0059 | 0.0532 | 0.0707

Table 3. Variation in Coercive Field (Ec), of (1-y)Bi;xNdxFeOs.,PbTiOs solid solutions with the variation in x
and y compositions

Compositions Coercive Field (Ec) V/cm
X y=0.1 y=02 | y=03 | y=04
0.05 8.0567 | 6.8490 | 4.1738 | 22.0160
0.10 6.3756 | 5.4957 | 2.1866 | 5.4734
0.15 5.6881 | 2.6572 | 2.8152 | 4.7471
0.20 1.3158 | 0.3358 | 2.7252 | 3.7500

The value of remnant polarisation and saturation
polarisation, however, increases for y >0.3
composition due to the ferroelectric nature of
PbTiOs and the fact that electric order predominates
over magnetic order in solid solutions.

3.4. Leakage Current (I) vs. Voltage (V)
Characteristics of Prepared Solid Solutions

Figure 13 to 16 depicts the plots between applied
voltage(V) and leakage current (I) of the prepared
(1-y)Bi1-xNd«FeOs-yPbTiO; solid solutions with
different x and y compositions at ambient
temperature.
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Fig. 13. Plots of Applied voltage (V) and leakage
current (I) for (1-y)Bi;xNdxFeOs.,PbTiO; solid
solutions with y= 0.1 and varying x compositions

The main drawback of the BiFeOs; compound is
its significant leakage current. The large leakage

current has traditionally restricted the usage of
BFO compounds on commercially available
devices. However, substituting kinds of ions
influences leakage current behaviour in different
prepared samples.
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The current leakage behaviour in different solid
solutions is to be altered by Nd doping and found
to decrease as Nd doping increases. Figures 13
to 16 show that the leakage current significantly
decreases from 102 to 107. For a rare-earth
element doped BFO compound, Yongyuan Zang
et al. obtained similar outcomes [29]. Increased
Nd doping reduces charge defects brought on
by oxygen vacancies and valence variations of
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Fe* ions to Fe™ ions, thereby reducing leakage
density. Also, since the average grain size is
smaller, the grain boundary's limited conduction
causes the local space charge at grain boundaries
to reduce current density. [30, 31].
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Fig. 15. Plots of Applied voltage (V) and leakage
current (I) for (1-y)Bi;xNdxFeOs.,PbTiO; solid
solutions with y= 0.3 and varying x compositions
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Fig. 16. Plots of Applied voltage (V) and leakage
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4. CONCLUSIONS

We systematically investigated the electrical and
ferroelectric properties of (1-y)Bi1.NdFeOs-yPbTiO;
solid solutions with varying x and y compositions.
We have found that the dielectric constant is
high at low frequencies and decreases with rising
frequency, attributed to oxygen vacancies and
Fe ion transitions induced by Nd doping. The

s g

dielectric loss tangent decreases with frequency
for all compositions but exhibits anomalies for
x< 0.10 and y >0.2 in the 1 kHz—1 MHz range,
aligning with the Debye relaxation process. The
temperature-dependent dielectric permittivity
suggests relaxor ferroelectric behaviour, with
anomalies linked to phase transitions and
multiferroic characteristics. In the ferroelectric
study, saturation and remnant polarisation peak
at x= 0.05 Nd composition but decline with
further Nd doping due to structural distortions
and oxygen vacancies. For y >0.3, polarisation
increases, driven by the dominance of electric
order over magnetic order. Hysteresis loops
indicate a pinning effect as Nd doping rises,
which may be associated with the samples'
enhanced energy storage capability. Nd doping
reduces leakage current by about four orders of
magnitude (from 102 to 107) by suppressing
charge defects and valence variations. Grain
boundary-limited conduction also contributes to
reduced current density. It broadens the sample's
applicability, requiring devices with stable,
efficient, low-power electrical performance.
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